Peeling coconut stems for high quality rotary veneer

Dr Rob McGavin
Queensland Department of Agriculture & Fisheries
June 2016
Earlier Research Project

Advanced veneer and other product from coconut wood
Processing Studies

Advanced veneer and other product from coconut wood
Wood Property Assessments
Sawn Timber Assessments

Advanced veneer and other product from coconut wood
End of Project Success

Advanced veneer and other product from coconut wood
• Low volume recovery
• Low recovery from log periphery
• Variable board sizes
• Variable board qualities
Sawing v’s Peeling

Advanced veneer and other product from coconut wood
Traditional Peeling

Advanced veneer and other product from coconut wood
Spindleless veneering approaches

Advanced veneer and other product from coconut wood
Current CocoVeneer Project

Key Challenges:

- Recovery of useful material from the periphery of small diameter logs
- Accommodating varying density across the log
- Slicing the hard vascular bundles without undue damage to surrounding soft matrix

Staged approach from laboratory to semi-industrial to industrial scale
Micro-lathe

Drive system

Cutting zone
Stage 1 - Range of parameters trialed

Lathe checks
New processing equipment suite
- Semi-industrial scale
- Test lathe modifications
- Validate and refine parameters
- Measure veneer properties
- Provide veneer for products
Stage 2 – DAF Salisbury

Limited quantity of Qld sourced billets available

Advanced veneer and other product from coconut wood
Stage 2 – DAF Salisbury

Options explored to source senile coconut logs.
Trial 2 – DAF Salisbury

Advanced veneer and other product from coconut wood
Trial 2

Advanced veneer and other product from coconut wood
Stage 3 – TUD

• Experimental veneer processing equipment at TUD, Nasinu, Fiji
• Recovered material shipped to QDAF
Stage 3 – TUD

Advanced veneer and other product from coconut wood
Stage 3 – TUD

Advanced veneer and other product from coconut wood
Stage 3 – TUD

Advanced veneer and other product from coconut wood
Stage 3 – TUD

- Lathe performed well
- Some issues with supporting equipment
- Veneer quality negatively impacted by lack of log heating capacity
- 23 logs, 249 veneer sheets
Stage 4 – VTB commercial trial

- Scale up to industrial production environment
- VTB commercial mill at Labasa, Fiji
- Lathe settings verified

Advanced veneer and other product from coconut wood
Stage 4 – VTB commercial trial

Confirmed unique lathe settings

Advanced veneer and other product from coconut wood
Stage 4 – VTB commercial trial

Log heating critical

Advanced veneer and other product from coconut wood
Stage 4 – VTB commercial trial

Advanced veneer and other product from coconut wood
Stage 4 – VTB commercial trial

Not without challenges!

Advanced veneer and other product from coconut wood
Stage 4 – VTB commercial trial

Quick and easy drying

Advanced veneer and other product from coconut wood
Stage 4 – VTB commercial trial

- 153 billets processed
- 12.5 m3 of dry veneer recovered
- Demonstrated the challenges of peeling coconut
- No drying challenges
- Good quantity of suitable quality veneer for product development activities.

Success!!
Processing Summary

• Peeling senile coconut stems can be successfully peeled using spindleless lathe technologies
• Robust equipment necessary
• Relatively narrow range of processing protocols exist
 • Heating billets critical
 • Unique lathe settings

• Veneer recovery ~60% of log volume
Veneer assessment

Visual assessments

- Colour
- **Roughness**
- Splits
- Britteness
- **Collapse**
- Decay
- Compression
- Wane
- Insects, etc
Veneer assessment

Traditional grading systems not appropriate

Provisional grading system proposed:

- Superior Quality (Grade 1) – 15%
- High Quality (Grade 2) – 50% (35%)
- Standard Grade (Grade 3) – 84% (34%)
Veneer assessment

Density

Advanced veneer and other product from coconut wood
Veneer assessment

Stiffness (Modulus of Elasticity)

Advanced veneer and other product from coconut wood
Summary

Key findings:

• Spindleless lathe technology can be effective in processing coconut stems with the right processing protocols
• Green recoveries ~60% is much more attractive than sawing (approx. double)
• Much higher recovery from the log periphery
• Fast drying with minimal degrade
• Recovery of usable veneer high (~40%)
• Recovered veneer has a range of qualities (mechanical, physical and appearance)
• Veneer mechanical properties were low compared to most wood species
• A grading system needs to be developed specific for coconut
Questions