Objective 4

Determine the optimum processing parameters & protocols for peeling coconut stems & the properties of the recovered veneer

Rob McGavin
Qld DAF
August 2015
Objective 4 – Determine the optimum processing parameters & protocols for peeling coconut stems & the properties of the recovered veneer

4.1 – Assessing veneer processing parameters for cocoveneer (Trial 1)

4.2 – Calibrating processing parameters at QDAF Salisbury Research Facility (Trial 2)

4.3 – Initial compact experimental peeling trial at TUD, Nasinu, Fiji (Trial 3)

4.4 – Compact commercial peeling trial at VTB, Labasa, Fiji (Trial 4)

4.5 – Broad industrial peeling trial in Fiji at TUD, Nasinu, Fiji (Trial 5)

4.6 – Properties and recovery assessment at QDAF Salisbury Research Facility
Objective 4 – Trial 1

4.1 – Assessing veneer processing parameters for cocoveneer

• **LAB SCALE** – determine optimum peeling parameters assessed from disc trials at ENSAM in France

• Micro-lathes used to determine lathe settings and stem pre-conditioning requirements
Trial 1 - Range of parameters trialed

- **G**: Gap between knife and nose bar
- **E**: Veneer Thickness
- **Ch**: Horizontal Gap
- **Cv**: Vertical Gap

Diagram: Disk, Nose bar, Veneer, Knife, Ch, Cv, G, E
Trial 1 - Range of parameters trialed

Angular

Cylindrical

Nose bar Ø 8 mm
Bracket
Angular nose bar
Needle bearings
Trial 1 - Range of parameters trialed

Lathe checks
Experimental Investigation on Rotary Peeling Parameters of High Density Coconut Wood

Henri Bailleres,a,b Louis Denaud,b Jean-Claude Butaud,b and Robert L. McGavin4

Substantial quantities of senile coconut palms are present in plantations within the Asia-Pacific region. Once coconut palms become over-mature, their production of traditional products, such as coconuts, significantly decreases, resulting in profitability challenges for farmers. Presently, few profitable markets exist for over-mature, senile coconut palms. Using the coconut palm stem in composite or engineered wood products could, however, provide an attractive alternative. Due to some of its unique characteristics, a processing system able to recover wood from the high-density zone near the stem periphery is desirable. A series of rotary veneer laboratory trials were undertaken to establish fundamental benchmark lathe settings and veneering characteristics for coconut palm stems. Different pressure bar configurations, billet pre-treatment temperatures, and veneer thicknesses were tested, and the resulting cutting forces and veneer quality were assessed. Optimal setting recommendations for peeling coconut wood are provided.
Objective 4 – Trial 2

4.2 – Calibrating processing parameters at QDAF Salisbury Research Facility

- Peeling trials in order to validate and refine parameters established during Trial 1

- Difficulties sourcing suitable coconut billets
 - North Qld billets – low/medium density
 - Fiji high density hollow billets – not successful

- Modified lathe preliminary testing
Advanced veneer and other product from coconut wood
4.3 – Initial compact experimental peeling trial

- Fiji stems processed to verify parameters developed
- Experimental veneer processing equipment at TUD, Nasinu, Fiji
- Preliminary training of TUD staff in equipment operation
- Recovered material shipped to QDAF
 - Veneer quality assessments
 - Veneer compression trial
 - Preliminary product investigation
4.3 – Initial compact experimental peeling trial in Fiji

- Lathe performed well
- Some issues with supporting equipment
 - pretreatment chamber: couldn’t heat logs hot enough!
- 23 logs (1.5 m³), 249 veneer sheets
- Around 60% recovery
- Veneer quality negatively impacted by lack of log heating capacity and lack of opportunity to optimise lathe settings
- Quality and volume insufficient for product development
- Additional processing scheduled in June 2015
 - Supporting equipment not prepared
 - Logs weren’t available
Objective 4 – Peeling trials

Advanced veneer and other product from coconut wood
• Report completed
 • Includes veneer quality assessments
4.4 – Compact commercial peeling trial in Fiji

- Scale up to commercial production
- Fiji stems processed at VTB production mill at Labasa
- Lathe settings verified
- Processing and handling protocols tested and refined
- Recovered material shipped to QDAF
4.4 – Compact commercial peeling trial in Fiji

- Completed in June 2015
- 171, 2500mm billets processed
- About 15 m3 of veneer
- Demonstrated the challenges of peeling coconut
- Further reinforced the necessity of billet pre-conditioning
- No drying challenges
- Good quantity of suitable quality veneer for product development activities.

Success!!
Trial 4 – VTB commercial trial

Advanced veneer and other product from coconut wood
Trial 4 – VTB commercial trial

Advanced veneer and other product from coconut wood
Trial 4 – VTB commercial trial

Advanced veneer and other product from coconut wood
Trial 4 – VTB commercial trial

Advanced veneer and other product from coconut wood
Trial 4 – VTB commercial trial

Advanced veneer and other product from coconut wood
4.4 – Compact commercial peeling trial in Fiji

• Veneer scheduled for arrival to DAF Salisbury Research Facility

• Veneer volumes, grade quality etc etc. to follow
4.5 – Broad industrial peeling trial in Fiji

• Peeling trial at TUD’s using experimental veneer processing facility
• Material characteristics confirmed
• Peeling, handling and grading protocols confirmed
• Recovered veneer shipped to QDAF for product testing
4.6 – Properties and recovery assessment

• Recovered veneer quality assessed
• Strength, dimensional stability, gluing characteristics etc to be determined
• Recovery data collected for economic assessment
Veneer quality assessment

- Trial 2 produced limited veneer
- Trial 3 produced 249 sheets but quality compromised
 - Recovery – 60% ungraded, graded ?? (quality compromised)
 - Visual quality assessments
 - Properties assessments
 - Pressing characteristics
Veneer assessment

Visual assessments
• Colour
• Roughness
• Splits
• Britteness
• Collapse
• Decay
• Compression
• Wane
• Insects, etc
Advanced veneer and other product from coconut wood

Veneer assessment

Properties assessments

- Density
- Stiffness (MoE)
Veneer assessment

Pressing characteristics

- Material behavior
- Influence of temperature and adhesive

![Graphs showing pressing characteristics and density variations](image-url)