Objective 1

Identify the most promising product options for the veneer from coconut stem
Project Objectives

1. Identify markets
2. Forestry: stem harvesting
3. Peeling in S. Pacific
4. Peeling trials
5. Assemble and test products

By-product utilisation

Advanced veneer and other product from coconut wood
Objective 1 – Identify the most promising product options for the veneer from coconut stem

1.1 – Market assessment and product development
1.2 – Value-chain analysis
1.3 – Stakeholder engagement
1.1 – Market assessment and product development

• Engagement with building designers, builders, producers and industry bodies in local and export markets
• Determine suite of appearance and structural products to develop all-cocoveneer and composite products
Objective 1 - 1.1 Product development

Harvested coconut logs, Savusavu, Vanua Levu. June 2015

Peeled coconut veneer Valebasoga Tropikboards Limited in Labasa. June 2015

Potential joinery or structural applications.
Summary

This is the last year of a four-year, collaborative project with six specific objectives:

1. Identify the most promising product options for the veneer from coconut stem.
2. Develop protocols and capacity for sustainable low-impact coconut wood harvesting, plantation rehabilitation, and log grading, handling and transport.
3. Establish experimental veneer-peeling capacity in the South Pacific.
4. Determine the optimum processing parameters and protocols for peeling coconut stems and the properties of the recovered veneer.
5. Assemble the product suite and establish its characteristics and in-service performance. Characterisation would be to local and export performance standards.
6. Determine the costs and benefits of using the residual cortex and soft, central cores for bio-char and other agricultural products.
1.1 Market Assessment...

- UTAS and QDAFF conducted interviews with design professionals and wood products manufacturers.
- Additional assessment of veneer material properties.
1.1 – Markets and product

- The form and material properties of coconut palms significantly influences the potential functionality of recovered coconut wood and veneer products.

- This generates competitive advantages and disadvantages.
Competitive advantages appear to include:

- The hardness/density of the outside of the stem, suitable for commercial floor traffic.
- The visual consistency of individual sheets, with a mottled, lively texture.
- A relatively narrow colour range with graduation from dark to light.
- The potential for reassembly into sizes larger than from sawing.
- Log supply is available, given the volume of standing senile stems.
- A clear environmental message.
Competitive disadvantages appear to include:

- A narrow colour range and visual liveliness that limits design diversity.
- A tendency to split during handling needing a thick veneer.
- The increased thickness of veneer may create difficulties during assembly.
- A low average MOE compared to radiata.
- A low shear strength, given the longitudinal vascular bundles.
- The low density of the inside material: < 400 kg/m3
Likely high utility applications:

- Appearance applications with a visually active palette, especially where hardness is required.
- Architectural application with a strong environmental or tourist agenda.
Likely medium utility applications

• Industrial applications where surface hardness is important.
• Inner bands and possibly surfaces of interior and furniture ply.

Likely low utility applications

• Structural applications due to MOE, MOR and shear constraints.
Proposed test product suite:

- An overlay product to simulate an overlay flooring or walling board.
- A nominal 35 mm LVL type product to deliver sizes larger than traditional coconut sawing.

Additional material properties results and option assembly is needed before further product suite refinement.
Objective 1 – Identify Markets

1.2 – Value-chain analysis
- Analysis performed in consultation with ACIAR’s PARDI network
- Costs and recoveries of each stage of production determined
 - This work is to run in parallel with the technical program.
- Explore potential production models.
Objective 1 - 1.2 Value chain analysis

Upgrading the coconut wood product value chain -
• Determine the coconut wood products manufactured from senile coconut stems that will contribute positively to the value chain
• Examine potential operation models
• Establish the costs of each production stage
• Examine the potential market rates of return
Objective 1 - 1.2 Value chain analysis

Operation Model 1 – Smaller scale firms making veneer for sale, possibly smaller island locations

Advanced veneer and other product from coconut wood
Objective 1 - 1.2 Value chain analysis

Operation Model 2 – Small-medium scale firms supplying a central drying and grading facility

- Green Mill i
- Green Mill j
- Green Mill k
- Centralised drying / grading and veneer sales
- Plywood / LVL manufacturers
- Independent veneer buyer / distributor

Advanced veneer and other product from coconut wood
Objective 1 - 1.2 Value chain analysis

Operation Model 3 – Larger scale firms, possibly in regional centre locations
Objective 1 - 1.2 Value chain analysis

Operation model 1: Small-scale green or air-dried veneer production

Advanced veneer and other product from coconut wood
Objective 1 - 1.2 Value chain analysis

Operation Model 3 – Larger scale firms, possibly in regional centre locations

- Log docking
- Peeling lathe / clipping
- Veneer drying
- Veneer grading
- Packaging / dispatch
- Log green residue
- Fuel storage
- Heat Plant
- Shredder
- Diesel Fuel
- Wood sales
- Veneer sales
- External veneer supply
- Green
- Dry
- Steam reticulation
- Site boundary

Advanced veneer and other product from coconut wood
Objective 1 - 1.2 Value chain analysis

OPERATING COSTS p.a.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Cost per unit</th>
<th>Units per year</th>
<th>Total Cost p.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log resource m³</td>
<td>90</td>
<td>100000</td>
<td>9000000</td>
</tr>
<tr>
<td>Packaging m³</td>
<td>1</td>
<td>55000</td>
<td>55000</td>
</tr>
<tr>
<td>Electricity MW Hours</td>
<td>150</td>
<td>5300</td>
<td>79500</td>
</tr>
<tr>
<td>Diesel for Dryer Start-up Ltrs</td>
<td>1.2</td>
<td>40000</td>
<td>48000</td>
</tr>
<tr>
<td>Equip. / maintenance /hr</td>
<td>18</td>
<td>5700</td>
<td>102600</td>
</tr>
<tr>
<td>Rates Premises</td>
<td>1</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Premises rental</td>
<td>1</td>
<td>175000</td>
<td>175000</td>
</tr>
<tr>
<td>Consumables /m³</td>
<td>2</td>
<td>55000</td>
<td>110000</td>
</tr>
<tr>
<td>Wrapping/Packaging /m³</td>
<td>5</td>
<td>55000</td>
<td>275000</td>
</tr>
<tr>
<td>Fuel</td>
<td>10</td>
<td>18000</td>
<td>180000</td>
</tr>
<tr>
<td>Freight to wharf /m³</td>
<td>25</td>
<td>55000</td>
<td>1375000</td>
</tr>
</tbody>
</table>

Total annual operating costs: 12155600

Logs -Dry Veneer Recovery

55%

REVENUE p.a.

- Dry veneer sales: 413 × 55000 = 22715000

GENERAL EXPENSES p.a.

- Auditing and Legal 0.5%: 35000
- Insurance: 150000
- Water Rates / Fees: 29000
- Office Equipment: 5000
- Phone / Communications: 4000

Total annual general expenses: 223000
Objective 1 - 1.2 Value chain analysis

Advanced veneer and other product from coconut wood
Objective 1 – Identify Markets

1.3 – Stakeholder engagement

- Stakeholder engagement meetings.
 - Impact in partner countries is fundamental to the project
- Website and resources
- Training
1.3 Stakeholder Engagement

Recent trips to PCs by Australian project team:
2014: Equipment installation and Annual meeting.
2015: Collaborator briefing in Fiji, Samoa, and Solomon Islands, harvesting and mill trials, equipment installation and Annual meeting.
1.3 Stakeholder Engagement
1.3 Stakeholder Engagement

- Broadened stakeholder engagement.
- Cocowood.net website updated with new videos.
- Regular project research notes to be circulated through:
 - the website,
 - contacts in the PCs and
 - Coconut newsgroup.
1.3 Stakeholder Engagement

Training

• Ms. Moana Masau has completed the UTAS Graduate Certificate Timber (Processing and Building).
• Crawford funding sought for 6-week placement of Moana Masau and Ilikimi Bokadi at QDAFF during Sept-Oct 2015.
• TUD process team peeling 30 logs next week after hands-on training this week.
Summary

• Initial product suite has been defined.
• Final product suite definition will be confirmed after initial assembly.
 – VTB material being delivered today.
• Value chain mapping.
 – Enterprise models have been identified
 – Product cost and returns data population is underway.
 – Veneer recovery values will be confirmed from assessment of Fijian peeling trials.
• Stakeholder engagement is being accelerated.
Objective 1 – Identify Markets

Key completion dates –

<table>
<thead>
<tr>
<th>Activity</th>
<th>Planned</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Initial market demand assessed</td>
<td>October 2012</td>
<td>October 2013</td>
</tr>
<tr>
<td>1.1 Initial product suite defined</td>
<td>February 2013</td>
<td>August 2015</td>
</tr>
<tr>
<td>1.2 Interim value chain analysis</td>
<td>February 2014</td>
<td>ongoing</td>
</tr>
<tr>
<td>1.3 Cocowood website updated</td>
<td>October 2012</td>
<td>November 2012</td>
</tr>
<tr>
<td>1.3 Stakeholder meetings</td>
<td>July 2013</td>
<td>August 2013</td>
</tr>
<tr>
<td></td>
<td>May 2014</td>
<td>August 2014</td>
</tr>
<tr>
<td></td>
<td>April 2015</td>
<td>August 2015</td>
</tr>
</tbody>
</table>

Advanced veneer and other product from coconut wood
Questions